

Available online at www.sciencedirect.com

Thermochimica Acta 431 (2005) 117–122

thermochimica acta

www.elsevier.com/locate/tca

Structure and magnetic property of Ce_{*x*}Eu_{1−*x*}CoO₃ prepared by means of the thermal decomposition of Ce*x*Eu1[−]*x*[Co(CN)6]·*n*H2O

Kenichirou Umemoto^a, Yasuyoshi Seto^a, Yoshio Masuda b, *

^a *Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan* ^b *Department of Environmental Science, Faculty of Science, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan*

Received 7 October 2004; received in revised form 24 November 2004; accepted 25 January 2005 Available online 17 February 2005

Abstract

 $Eu[Co(CN)₆]$ ·4H₂O and $Ce_xEu_{1-x}[Co(CN)₆]$ ·4H₂O ($x = 0.1$, 0.15, 0.2, 0.3 and 0.4) were synthesized as the precursors to obtain the homogeneous perovskite-type oxides, EuCoO₃ and Ce_xEu_{1−*x*}CoO₃.

The oxides EuCoO₃ and Ce_xEu_{1−*x*}CoO₃ were obtained by the thermal decompositions of Eu[Co(CN)₆]·4H₂O and $Ce_xEu_{1-x}[Co(CN)_6]$ ·4H₂O, respectively. In the ranges of $x \le 0.5$, the lattice parameters of these perovskite-type oxides, *a* and *b*, linearly lengthen with the increase of the value of *x*, but those of *c* are nearly constant. These findings indicated that Ce*x*Eu1[−]*x*CoO3 was formed in the range of $x \le 0.5$. The structures of EuCoO₃ and Ce_xEu_{1−*x*}CoO₃ were determined by means of the Rietveld method, and these oxides were orthorhombic and *Pnma*.

The magnetic susceptibility of EuCoO₃ showed the paramagnetic property, which includes Van Vleck's paramagnetism. The Co^{III} in EuCoO₃ were in the low ground spin state ($t_{2g}^6 e_{g}^0$, S = 0), and the susceptibility of EuCoO₃ was dependent on the Eu^{III} in observed temperature ranges.

The valence combination of $Ce_{0.1}Eu_{0.9}CoO_3$ was considered to be $Ce_{0.1}^{\text{III}}Eu_{0.9}^{\text{III}}CoO_3$ from the temperature dependency of the magnetic susceptibility of $Ce_{0.1}Eu_{0.9}CoO_3$.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Thermal decomposition of Ce*x*Eu1[−]*x*[Co(CN)6]·*n*H2O; Perovskite-type oxides of Ce*x*Eu1[−]*x*CoO3; Magnetic susceptibility

1. Introduction

A series of perovskite-type oxides, $LnCoO₃$ ($Ln=La$, Pr–Lu) have been investigated for their structures, electrical and magnetic properties for a long time [1,2]. For example, $LaCoO₃$ has two magnetic transitions at around 120 and 500 K [3–5]. Asai et al. [6] proposed that the first was the transition from the low spin ground state of Co^{III} ($t_{2g}^{6}e_{g}^{0}$, $(S = 0)$ to the intermediate spin state $(t_{2g}^5 e_g^1, S = 1)$, and the second was the transition from the intermediate spin state to the [high](#page-4-0) [spi](#page-4-0)n state $(t_{2g}^4 e_g^2, S=2)$.

In the series of oxides of $LnCoO₃$, only $CeCoO₃$ has not yet been obtained. The final products of the decomposition of $Ce[Co(CN)₆]$ -5H₂O were the mixture of $CeO₂$ and $Co₃O₄$. If the lanthanide ions of $LnCoO₃$ could be partly substituted by cerium ion, $Ln_xCe_{1-x}CoO_3$ should be obtained. However, the final product of the thermal decomposition of La_xCe_{1−*x*}[Co(CN)₆]·5H₂O was a mixture of LaCoO₃, La2O3, CeO2 and Co3O4, and La*x*Ce1[−]*x*CoO3 was not obtained.

Recently, authors succeeded to prepare Ce_{*x*}Eu_{1−*x*}CoO₃ $(x=0.1$ and (0.15) by the thermal decomposition of Ce_{*x*}Eu_{1−*x*}[Co(CN)₆]⋅4H₂O. It is known that the normal valences of the lanthanide ions are $+3$, however, Ce^{3+} ion is more easily oxidized to Ce^{4+} ion than the other trivalent lanthanide ions. On the other hand, Eu^{2+} ion is more stable than the other divalent lanthanide ions. Therefore, the valence combinations of $\text{Ce}_{x}^{\text{IV}}\text{Eu}_{x}^{\text{III}}\text{Eu}_{1-2x}^{\text{III}}\text{CoO}_3$ and $\text{Ce}_{x}^{\text{III}}\text{Eu}_{1-x}^{\text{III}}\text{CoO}_3$ are expected for Ce*x*Eu1[−]*x*CoO3.

[∗] Corresponding author. Tel.: +81 252626367; fax: +81 252626367. *E-mail address:* masuda@env.sc.niigata-u.ac.jp (Y. Masuda).

^{0040-6031/\$ –} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2005.01.054

In this paper, the oxides of EuCoO₃ and $Ce_xEu_{1-x}CoO_3$ were prepared by means of the thermal decomposition of Eu[Co(CN)6]·4H2O and Ce*x*Eu1[−]*x*[Co(CN)6]·4H2O in air atmosphere, respectively. The structures of $EuCoO₃$ and $Ce_xEu_{1−x}CoO₃$ were studied by means of the Rietveld analysis [7,8] of their powder X-ray diffractions. The magnetic susceptibilities of these oxides also were measured to determine the valence combination of Ce and Eu ions.

2. Experimental

2.1. Chemicals and preparations

 $Eu[Co(CN)₆]$ ·4H₂O was prepared by mixing equimolar of $K_3[Co(CN)_6]$ and $Eu(NO_3) \cdot 6H_2O$ in an aqueous solution and heating at ca. 360 K. $Ce_xEu_{1−x}[Co(CN)₆]+4H₂O$ $(x=0.1, 0.15, 0.2, 0.3, and 0.4)$ were also prepared by mixing 0.2 mol dm^{-3} K₃[Co(CN)₆] aqueous solution, $0.2 \times x$ mol dm⁻³ Ce(NO₃)·6H₂O aqueous solution and $0.2 \times (1 - x)$ mol dm⁻³ Eu(NO₃)·6H₂O aqueous solution, and heating the mixture at ca. 360 K.

 $Ce(NO₃)·6H₂O$ and $Eu(NO₃)·6H₂O$ were purchased from Shinetsu Chemical Co., both the purities were 99.9% and used without further purification. $K_3[Co(CN)_6]$ was obtained from Sigma Aldrich Co., and used after the purification by recrystallization from distilled water [9–11].

EuCoO₃ and Ce_xEu_{1−*x*}CoO₃ ($x=0.1$ and 0.15) were prepared by heating Eu[Co(CN)₆]·4H₂O and Ce_xEu_{1−*x*} $[Co(CN)₆]$ ·4H₂O to 1473 K for 2 h under air atmosphere in ADVANTEC electric furnace KT-1533, respectively.

2.2. Measurements

Thermogravimetry (TG) and differential thermal analysis (DTA) curves were simultaneously recorded on a Rigaku Thermoflex TAS200. About 10 mg of sample was weighed into a platinum crucible and heated to 1273 K with the heating rate of 10 K min⁻¹ in the air atmosphere. An α -alumina was used as a reference [9–16].

X-ray powder diffraction (XRD) profiles were obtained by means of the method previously described [9–13]. The lattice parameters of $Eu[Co(CN)₆] \cdot 4H₂O$, $Ce_xEu_{1-x}[Co(CN)_6]$ ·4H₂O ($x=0.1$, 0.2, 0.3 and 0.4), EuCoO₃ and Ce_xEu_{1−*x*}CoO₃ ($x=0.1$ and 0.15) were predicted by use of the CELL program [17], and the refinements of the structures of EuCoO₃ and Ce_{*x*}Eu_{1−*x*}CoO₃ ($x = 0.1$ and 0.15) were performed by means of the Rietveld method by use of the RIETAN2000 [7,8].

The magnetic suscep[tibilit](#page-5-0)y of EuCoO₃ and Ce_xEu_{1−*x*} $CoO₃$ ($x = 0.1$ and 0.15) were measured in a SQUID magnetometer, Quantum Design MPMS-XL in the temperature range from 5 [to 30](#page-4-0)0 K with an applied magnetic field at 10,000 Oe.

Fig. 1. TG–DTA curves of $Eu[Co(CN)_6]$ -4H₂O and $Ce_{0.1}Eu_{0.9}$ $[Co(CN)_{6}]$ ·4H₂O: (a) Eu[Co(CN)₆]·4H₂O; (b) Ce_{0.1}Eu_{0.9}[Co(CN)₆]·4H₂O. (—) TG; (- - -) DTA.

3. Results and discussion

3.1. The structure of CexEu1−*x[Co(CN)6]*·*4H2O*

The TG–DTA curves for $Eu[Co(CN)_6]$ -4H₂O and $Ce_{0.1}Eu_{0.9}[Co(CN)₆]*n*H₂O$ are shown in Fig. 1. The dehydration took place at least two stages, and these complexes were tetrahydrates from the thermal gravimetries [14,15]. Fig. 2 shows the XRD profiles of $Eu[Co(CN)₆] \cdot 4H₂O$ and $Ce_xEu_{1-x}[Co(CN)_6]$ ·4H₂O ($x=0.1$, 0.2, 0.3 and 0.4).

Fig. 2. XRD profiles of Eu[Co(CN)₆]·4H₂O and Ce_xEu_{1−*x*} $[Co(CN)₆]·4H₂O:$ (a) $Eu[Co(CN)₆]·4H₂O;$ (b) $x=0.1;$ (c) $x=0.2;$ (d) $x=0.3$; (e) $x=0.4$.

Fig. 3. Lattice parameters of Eu[Co(CN)₆]·4H₂O and Ce_xEu_{1−*x*} [Co(CN)6]·4H2O: (a) *a*-axis; (b) *b*-axis; (c) *c*-axis.

The crystal structure of $Eu[Co(CN)_6] \cdot 4H_2O$ was orthorhombic and *Cmcm* [18]. The crystal structures of $Ce_xEu_{1-x}[Co(CN)₆]·4H₂O$ (*x* = 0.1, 0.2, 0.3 and 0.4) were assumed to be orthorhombic and *Cmcm* because their profiles were similar to those of $Eu[Co(CN)₆] \cdot 4H₂O$. The X-ray diffraction pea[ks](#page-5-0) [of](#page-5-0) [C](#page-5-0)e*x*Eu1[−]*x*[Co(CN)6]·4H2O shifted into lower angles with increase of the value of *x*. The lattice parameters predicted by use of the CELL program, were linearly expanded with the increase of the value of *x* (Fig. 3).

3.2. The structure of CexEu1−*xCoO3*

Fig. 4 shows the XRD profiles of the residues obtained by heating Eu[Co(CN)6]·4H2O and Ce*x*Eu1[−]*x*[Co(CN)6]·4H2O (*x* = 0.1, 0.15, 0.2, 0.3 and 0.4) to 1473 K in air atmosphere. The final product of $Eu[Co(CN)₆] \cdot 4H₂O$ was $EuCoO₃$ [19]. The profiles for $x=0.1$ and 0.15 were similar to that of EuCoO₃. However, the peaks of CeO₂ [20], Eu₂O₃ [21] and $Co₃O₄$ [22] appeared on the profiles for $x \ge 0.2$. In the ranges of $x \le 0.5$, the lattice parameters of *a* [and](#page-5-0) *b* linearly lengthen with the increase of the value of *x*, but those of *c* are nearly constant. In the ranges of $x > 0.2$, the [lattice](#page-5-0) paramet[ers](#page-5-0) [of](#page-5-0) *a*, *b* and *c* are almost constant values (Fig. 5). These results indicate that Eu atoms in $EuCoO₃$ can be replaced with Ce atoms in the range of $x \le 0.5$ leading to formation of $Ce_xEu_{1-x}CoO₃$.

The XRD profiles for $EuCoO₃$, $Ce_{0.1}Eu_{0.9}CoO₃$ and $Ce_{0.15}Eu_{0.85}CoO₃$ were refined by means of the Rietveld method [7,8]. The observed profiles of these oxides showed good agreement with the calculated ones (Fig. 6). The reliability factors and the goodness of fit indicator *S* are shown in Table 1. These oxides were orthorhombic and *[Pnm](#page-4-0)a*.

Fig. 4. XRD profiles of the residues of $Eu[Co(CN)_6]$ -4H₂O and $Ce_xEu_{1-x}[Co(CN)₆]·4H₂O$ heated at 1473 K: (a) Eu[Co(CN)₆]·4H₂O; (b) $x=0.1$; (c) $x=0.15$; (d) $x=0.2$; (e) $x=0.3$; (f) $x=0.4$. (\bullet) CeO₂; (\Box) Eu₂O₃; (\triangle) Co₃O₄.

3.3. The magnetic property of EuCoO3

The magnetic susceptibility of EuCoO₃, χ _m (EuCoO₃) was measured in the temperature ranges from 5 to 300 K (Fig. 7). The $\chi_{\rm m}$ (EuCoO₃) remained almost constant at

Fig. 5. Lattice parameters of EuCoO₃ and Ce_xEu_{1−*x*}CoO₃: (a) *a*-axis; (b) *b*-axis; (c) *c*-axis.

Fig. 6. Rietveld refinement profile of $EuCoO₃$ and $Ce_{0.1}Eu_{0.9}CoO₃:$ (a) $EuCoO_3$; (b) $Ce_{0.1}Eu_{0.9}CoO_3$. The dotted line is the observed X-ray diffraction profile, and the solid line is the calculated one. The bottom curve shows the difference of observed and calculated ones, and the small bars indicate the angular positions of the allowed Bragg reflections.

lower temperature than 100 K and then decreased with the increase of the temperature. The temperature dependency of $\chi_{\rm m}$ (EuCoO₃) shows that EuCoO₃ has the paramagnetic property, which includes Van Vleck's paramagnetism. The deviation from the paramagnetism observed below 20 K is ascribable to the contribution of impurities [6].

Table 1 Crystallographic data of $EuCoO₃$ and $Ce_{0.1}Eu_{0.9}CoO₃$

	EuCoO ₃	$Ce01Eu09CoO3$
2θ range (°)	$10 - 70$	$10 - 70$
Step scan increment $(°)$	0.02	0.02
Count time (s)	3	3
Crystal system	Orthorhombic	Orthorhombic
Space group	Pnma	Pnma
a(A)	5.3719(2)	5.3935(2)
b(A)	7.4808(3)	7.4861(2)
c(A)	5.2589(2)	5.2584(2)
Reliability factor		
$R_{\rm wp} (%)^{\rm a}$	19.85	17.89
$R_{\rm p} (%)^{\rm b}$	12.17	12.24
R_e $(\%)^c$	15.34	14.75
$R_{\rm I}$ (%) ^d	4.57	3.14
R_F (%) ^e	3.89	3.16
S^f	1.29	1.21

^a *R*-weighed pattern.

^b *R*-pattern.

^c *R*-expected.

^d *R*-integrated intensity.

^e *R*-structure factor.

^f The 'goodness-of-fit' indicator.

Fig. 7. The magnetic susceptibilities: (\bigcirc) observed χ ^m (EuCoO₃); (--) estimated χ_{m} (Eu^{III}) by use of Eq. (1).

In 1932, Van Vleck proposed the method to evaluate the magnetic susceptibility of any ion as follows [23]:

$$
\chi_{\rm m} = \frac{\sum_{|L-S|}^{|L+S|} \{ \chi_{\rm Curie} + \chi_{\rm Van \ Vleck} \} (2J+1) \, \mathrm{e}^{-E_J/k_{\rm B}T}}{\sum_{|L-S|}^{|L+S|} (2J+1) \, \mathrm{e}^{-E_J/k_{\rm B}T}} \qquad (1)
$$

where

$$
\chi_{\text{Curie}} = \frac{N_{\text{A}}\mu_{\text{B}}^2 g_J^2 J(J+1)}{3k_{\text{B}}T} \tag{2}
$$

$$
\chi_{\text{Van Vleck}} = \frac{N_{\text{A}}\mu_{\text{B}}^2}{6(2J+1)} \left\{ \frac{F(J+1)}{E_{J+1} - E_J} - \frac{F(J)}{E_J - E_{J-1}} \right\} \tag{3}
$$

$$
g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}
$$
(4)

and

$$
F(J) = \frac{\{(S + L + 1)^2 - J^2\}\{J^2 - (S - L)^2\}}{J}
$$
 (5)

where, N_A , k_B and μ_B are the Avogadro's constant, Boltzmann's constant and Bohr's magnetron, respectively. In Eq. (1), the diamagnetic term was omitted, since it was negligibly small.

In 2001, Sudheendra et al. [24] reported that the transition temperature from the low spin ground state $(t_{2g}^{6}e_g^0, S=0)$ of Co^{III} of LnCoO₃ to the intermediate spin state $(t_{2g}^5 e_g^1, S=1)$ increased with the decrease in the size of the lanthanide ion. The transition te[mperatu](#page-5-0)res reported for $LaCoO₃$, $PrCoO₃$ and NdCoO3 were 120, 220 and 275 K, respectively. Aso and Miyahara [25] also reported that all Co^{III} of $GdCoO₃$ are in the low spin state at lower temperature than 300 K. These facts suggest that Co^{III} does not contribute to the χ_{m} (EuCoO3). The relationship between the magnetic susceptibilit[y and](#page-5-0) temperature of Eu^{III} ion estimated by use of Eq. (1), resembled to that of $EuCoO₃$ (Fig. 7).

Fig. 8. The magnetic moment: (\bigcirc) μ_{exp} of EuCoO₃ determined from the susceptibilities; (—) estimated μ_{eff} of Eu^{III} ion by use of Eq. (1).

The effective magnetic moment can be described as follows:

$$
\mu_{\rm eff} = \sqrt{\frac{3\chi k_{\rm B}T}{N_{\rm A}}} \tag{6}
$$

Fig. 8 shows the experimental magnetic moment μ_{exp} (EuCoO3) determined from the magnetic susceptibilities of Fig. 7 and the effective magnetic moment μ_{eff} (Eu^{III}) estimated from Eq. (1). The difference between the μ_{exp} of EuCoO₃ and μ_{eff} of Eu^{III} ion was very small. These findings indicate that almost all Co^{III} of EuCoO₃ are in the low spin ground state in observed temperature ranges, and the $\chi_{\rm m}$ $(EuCoO₃)$ must be depended on the Eu^{III}.

3.4. The magnetic property of Ce0.1Eu0.9CoO3

Fig. 9 shows the relationships between the magnetic susceptibilities and temperatures for $Ce_{0.1}Eu_{0.9}CoO₃$ and EuCoO3. The temperature dependency of the susceptibility of $Ce_{0.1}Eu_{0.9}CoO_3$ was different from that of $EuCoO_3$, and increased rapidly at lower temperatures than 120 K. Because Co^{III} is diamagnetic in these low temperature ranges, the susceptibility of $Ce_{0.1}Eu_{0.9}CoO_3$, χ_{m} ($Ce_{0.1}Eu_{0.9}CoO_3$) is dependent on the lanthanide ions.

To evaluate the magnetic property of $Ce_{0.1}Eu_{0.9}Co₃$, two valence combinations, $\text{Ce}_{0.1}^{\text{III}}\text{Eu}_{0.9}^{\text{III}}\text{CoO}_3$ and $\text{Ce}_{0.1}^{\text{IV}}\text{Eu}_{0.1}^{\text{II}}$ $\text{Eu}_{0.8}^{\text{III}}\text{CoO}_3$ were presumed. Considering the valence combinations, Ce^{IV} is diamagnetic, and Ce^{III} ($\mu_{eff} = 2.54 \mu_B$) and Eu^{II} ($\mu_{eff} = 7.94 \mu_B$) are paramagnetic. Assuming

Fig. 9. The magnetic susceptibilities: (\cap) EuCoO₃; (\bullet) Ce_{0.1}Eu_{0.9}CoO₃.

Fig. 10. The magnetic susceptibilities: (\bigcirc) observed χ_{m} (Ce_{0.1}Eu_{0.9}CoO₃); (—) estimated χ_{m} (Ce_{0.1}Eu_{0.9}CoO₃) by use of Eq. (1). (---): Estimated χ_{m} (Ce_{0.1}Eu_{0.1}Eu_{0.8}CoO₃) by use of Eq. (1).

the additivity of the magnetic susceptibility, the χ m $(Ce_{0.1}^{III}Eu_{0.9}^{III}CoO_3)$ and χ_{m} $(Ce_{0.1}^{IV}Eu_{0.1}^{II}Eu_{0.8}^{III}CoO_3)$ $(Ce_{0.1}^{IV}Eu_{0.1}^{II}Eu_{0.8}^{III}CoO_3)$ $(Ce_{0.1}^{IV}Eu_{0.1}^{II}Eu_{0.8}^{III}CoO_3)$ could be estimated by use [of](#page-3-0) [E](#page-3-0)q. (1). Comparing the temperature dependency of the χ_{m} (Ce_{0.1}Eu_{0.9}CoO₃) to those of χ_{m} $(Ce_{0.1}^{\text{III}} \text{Eu}_{0.9}^{\text{III}} \text{CoO}_3)$ and χ_{m} $(Ce_{0.1}^{\text{IV}} \text{Eu}_{0.1}^{\text{II}} \text{Eu}_{0.8}^{\text{III}} \text{CoO}_3)$, the profile of χ_{m} (Ce_{0.1}Eu_{0.9}CoO₃) was similar to that of χ_{m} $(Ce_{0.1}^{\text{III}} \text{Eu}_{0.9}^{\text{III}} \text{CoO}_3)$ [\(F](#page-3-0)ig. 10). This finding indicates that valence combination of $\text{Ce}_{0.1}\text{Eu}_{0.9}\text{CoO}_3$ was $\text{Ce}_{0.1}^{\text{III}}\text{Eu}_{0.9}^{\text{III}}\text{CoO}_3$.

References

- [1] J.B. Goodenough, J.M. Longo, Magnetic and Other Properties of Oxide and Related Compounds, Landort–Bornstein, New Series Group III Part a, vol. 4, Springer-Verlag, New York, 1970, pp. 162– 248.
- [2] S. Nomura, Magnetic and Other Properties of Oxide and Related Compounds, Landort–Bornstein, New Series Group III Part a, vol. 4, Springer-Verlag, New York, 1978, pp. 388–465.
- [3] R.R. Heikes, R.C. Miller, R. Mazelsky, Physica 30 (1964) 1600.
- [4] S. Stolen, F. Gronvold, H. Brinks, T. Atake, H. Mori, Phys. Rev. B 55 (1997) 14103.
- [5] M. Itoh, J. Hashimoto, S. Yamaguchi, Y. Tokura, Physica B 281/282 (2000) 510.
- [6] K. Asai, A. Yoneda, O. Yokokura, J.M. Tranquada, G. Shirane, K. Kohn, J. Phys. Soc. Jpn. 67 (1998) 290.
- [7] H.M. Rietveld, J. Appl. Crystallogr. 2 (1969) 65.
- [8] F. Izumi, T. Ikeda, Mater. Sci. Forum 198 (2000) 321.
- [9] Y. Masuda, Y. Seto, X. Wang, Y. Yukawa, T. Arii, J. Therm. Anal. Calorim. 60 (2000) 1033.
- [10] Y. Masuda, Y. Seto, X. Wang, Y. Tuchiya, J. Therm. Anal. Calorim. 64 (2001) 1045.
- [11] Y. Seto, S. Nagao, X. Wang, Y. Masuda, J. Therm. Anal. Calorim. 73 (2003) 755.
- [12] Y. Masuda, A. Yahata, H. Ogawa, Inorg. Chem. 34 (1995) 3130.
- [13] Y. Masuda, W. Morita, X. Wang, Thermochim. Acta 352/353 (2000) 61.
- [14] Y. Masuda, K. Nagaoka, H. Ogawa, O. Nakazato, Y. Yukawa, H. Miyamoto, J. Alloys Compds. 235 (1996) 23.
- [15] Y. Masuda, K. Kikuchi, Y. Yukawa, H. Miyamoto, J. Alloys Compds. 260 (1997) 70.
- [16] T. Arii, Y. Masuda, Thermochim. Acta 342 (1999) 139.
- [17] Y. Takaki, T. Taniguchi, K. Hori, Seramikkusu Ronbunshi 101 (1993) 373.
- [18] Y. Yukawa, S. Igarashi, T. Kawaura, H. Miyamoto, Inorg. Chem. 35 (1996) 7399.
- [19] Powder Diffraction File, Inorganic Volume, No. 25-1054, ICDD, Pennsylvania, USA, 1984.
- [20] Powder Diffraction File, Inorganic Volume, No. 34-394, ICDD, Pennsylvania, USA, 1989.
- [21] Powder Diffraction File, Inorganic Volume, No. 34-392, ICDD, Pennsylvania, USA, 1989.
- [22] Powder Diffraction File, Inorganic Volume, No. 9-418, ICDD, Pennsylvania, USA, 1967.
- [23] J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford, 1932.
- [24] L. Sudheendra, Md.M. Seikh, A.R. Raju, C. Narayana, Chem. Phys. Lett. 340 (2001) 275.
- [25] K. Aso, S. Miyahara, J. Phys. Soc. Jpn. 19 (1964) 778.